skip to main content


Search for: All records

Creators/Authors contains: "Brucker, Ludovic"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Surface melting on the Antarctic Ice Sheet has been monitored by satellite microwave radiometry for over 40 years. Despite this long perspective, our understanding of the microwave emission from wet snow is still limited, preventing the full exploitation of these observations to study supraglacial hydrology. Using the Snow Microwave Radiative Transfer (SMRT) model, this study investigatesthe sensitivity of microwave brightness temperature to snow liquid water content at frequencies from 1.4 to 37 GHz. We first determine the snowpack properties for eight selected coastal sites byretrieving profiles of density, grain size and ice layers from microwave observations when the snowpack is dry during wintertime. Second, a series of brightness temperature simulations is run with added water. The results show that (i) a small quantity of liquid water (≈0.5 kg m−2) can be detected, but the actual quantity cannot be retrieved out of the full range of possible water quantities; (ii) the detection of a buried wet layer is possible up to a maximum depth of 1 to 6 m depending on the frequency (6–37 GHz) and on the snow properties (grain size, density) at each site; (iii) surface ponds and water-saturated areas may prevent melt detection, but the current coverage of these waterbodies in the large satellite field of view is presently too small in Antarctica to have noticeable effects; and (iv) at 1.4 GHz, while the simulations are less reliable, we found a weaker sensitivity to liquid water and the maximal depth of detection is relatively shallow (<10 m) compared to the typical radiation penetration depth in dry firn (≈1000 m) at this low frequency. These numerical results pave the way for the development of improved multi-frequency algorithms to detect melt intensity and the depth of liquid water below the surface in the Antarctic snowpack. 
    more » « less
  2. null (Ed.)
    Abstract. In the 2019/2020 austral summer, the surface melt duration andextent on the northern George VI Ice Shelf (GVIIS) was exceptional comparedto the 31 previous summers of distinctly lower melt. This finding is basedon analysis of near-continuous 41-year satellite microwave radiometer andscatterometer data, which are sensitive to meltwater on the ice shelfsurface and in the near-surface snow. Using optical satellite imagery fromLandsat 8 (2013 to 2020) and Sentinel-2 (2017 to 2020), record volumes ofsurface meltwater ponding were also observed on the northern GVIIS in2019/2020, with 23 % of the surface area covered by 0.62 km3 of ponded meltwater on 19 January. These exceptional melt andsurface ponding conditions in 2019/2020 were driven by sustained airtemperatures ≥0 ∘C for anomalously long periods (55 to 90 h)from late November onwards, which limited meltwater refreezing.The sustained warm periods were likely driven by warm, low-speed (≤7.5 m s−1) northwesterly and northeasterly winds and not by foehn windconditions, which were only present for 9 h total in the 2019/2020 meltseason. Increased surface ponding on ice shelves may threaten theirstability through increased potential for hydrofracture initiation; a riskthat may increase due to firn air content depletion in response tonear-surface melting. 
    more » « less